FRAGSITE2: A structure and fragment‐based approach for virtual ligand screening

Author:

Zhou Hongyi1ORCID,Skolnick Jeffrey1

Affiliation:

1. Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology Atlanta Georgia USA

Abstract

AbstractProtein function annotation and drug discovery often involve finding small molecule binders. In the early stages of drug discovery, virtual ligand screening (VLS) is frequently applied to identify possible hits before experimental testing. While our recent ligand homology modeling (LHM)‐machine learning VLS method FRAGSITE outperformed approaches that combined traditional docking to generate protein–ligand poses and deep learning scoring functions to rank ligands, a more robust approach that could identify a more diverse set of binding ligands is needed. Here, we describe FRAGSITE2 that shows significant improvement on protein targets lacking known small molecule binders and no confident LHM identified template ligands when benchmarked on two commonly used VLS datasets: For both the DUD‐E set and DEKOIS2.0 set and ligands having a Tanimoto coefficient (TC) < 0.7 to the template ligands, the 1% enrichment factor (EF1%) of FRAGSITE2 is significantly better than those for FINDSITEcomb2.0, an earlier LHM algorithm. For the DUD‐E set, FRAGSITE2 also shows better ROC enrichment factor and AUPR (area under the precision‐recall curve) than the deep learning DenseFS scoring function. Comparison with the RF‐score‐VS on the 76 target subset of DEKOIS2.0 and a TC < 0.99 to training DUD‐E ligands, FRAGSITE2 has double the EF1%. Its boosted tree regression method provides for more robust performance than a deep learning multiple layer perceptron method. When compared with the pretrained language model for protein target features, FRAGSITE2 also shows much better performance. Thus, FRAGSITE2 is a promising approach that can discover novel hits for protein targets. FRAGSITE2's web service is freely available to academic users at http://sites.gatech.edu/cssb/FRAGSITE2.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3