Affiliation:
1. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, School of Machinery and Automation Wuhan University of Science and Technology Wuhan China
2. Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, School of Machinery and Automation Wuhan University of Science and Technology Wuhan China
Abstract
AbstractThe marine stern bearing provides supporting force by lubricating film to minimise the contact friction with the propeller shaft. A model considers local wear and asperity contact is proposed to investigate the mixed lubrication of bearing with misalignment. The finite difference method and over‐relaxation iteration method are employed to solve the average Reynolds equation. The lubrication behaviour includes hydrodynamic pressure, film thickness, contact force and friction coefficient were calculated. The influence of sliding speed, local wear, contact roughness, misalignment angle, elastic deformation and eccentricity ratio is discussed in detail. The critical speed from mixed lubrication to fluid lubrication is obtained by employing the Stribeck curve. Moreover, the dimensionless average hydrodynamic pressure, film thickness and the peak value of contact force are compared.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献