Rapid and Portable Presumptive Loop‐Mediated Isothermal Amplification Assays for the Detection of the Invasive Corn Snake (Pantherophis guttatus)

Author:

Deliveyne Nathan12ORCID,Austin Jeremy J.2,Sanders Kate2,Cassey Phillip12

Affiliation:

1. Invasion Science & Wildlife Ecology Lab The University of Adelaide Adelaide South Australia Australia

2. School of Biological Sciences and the Environment Institute The University of Adelaide Adelaide South Australia Australia

Abstract

ABSTRACTThe exotic pet trade is a major pathway for the introduction, establishment, and spread of novel invasive alien species. Reptiles are common in the exotic pet trade and are prominent invasive alien vertebrate species that have dire impacts if allowed to establish. The North American corn snake (Pantherophis guttatus) is particularly common in the international pet trade and has been identified as a vertebrate pest priority species in Australia due to widespread climate suitability and prevalence in pre‐ and post‐border seizure records. Consequently, rapid, and presumptive post‐border biosecurity detection is essential to prevent its establishment and spread. Loop‐mediated isothermal amplification (LAMP) is an emerging biosecurity tool that has shown promise for rapid detection of several high‐risk species. We developed two LAMP assays for the detection of P. guttatus, validated against: synthetic DNA; DNA extracted from snap‐frozen tissue, and shed skins; and then compared their performance for the detection of trace DNA collected from swabs of glass tanks post reptile presence. Our results include laboratory optimization and assessment of two mobile devices for in‐field integration (Franklin Real‐Time PCR Thermocycler, Biomeme, USA, and Genie III, Optigene, UK). The results indicate that LAMP is a viable biosecurity tool, with DNA detection possible for a range of sample types in a total of c.30 min, when including a rapid extraction step (8 min). Herein, we provide tools for rapid, presumptive detection of the North American corn snake from trace DNA samples in Australian biosecurity and wildlife compliance settings.

Funder

Department of Agriculture, Fisheries and Forestry, Australian Government

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3