Direct tensile damage process of calcite vein shale based on 3D CT reconstruction

Author:

Meng Xiangrui1,Wu Zhonghu1ORCID,Lan Baofeng2,Jiang Haishen2,Yang Yuhan1,Wang Wentao3

Affiliation:

1. College of Civil Engineering Guizhou University Guiyang China

2. Guizhou Energy Industry Research Institute Co., Ltd Guiyang China

3. School of Mechanics and Civil Engineering China University of Mining and Technology Beijing China

Abstract

AbstractFrom core observations of shales of the Niutitang formation in the northern part of Guizhou Province, China, calcite was often found to act as a natural fracture filler and affect the extension of fractures in hydraulic fracturing. Therefore, it is crucial to understand the tensile mechanical behavior of shales by calcite veins. In this paper, by computed tomography scanning of shales containing calcite veins of different dip angles from the Niutitang formation, a three‐dimensional numerical model reflecting the internal fine structure of the shale was constructed. Direct tensile numerical simulations were carried out to investigate the effect of calcite veins at different angles on the fine‐scale damage process and mechanical properties of shale. The experimental results show that the tensile capacity of the shale increases with the increase in calcite veins. Depending on the dip angle of the calcite vein, the damage pattern of the shale is divided into three types of damage: pull‐off damage along the calcite vein, jagged damage, and horizontal damage perpendicular to the loading method. At high dip angles, the shale damage is more intense and the fracture network more complex. The temporal and spatial characteristics of the acoustic emissions provide a good indication of the microscopic behavior of the shale specimens during the damage process. The box dimension method was used to calculate the fractal dimension of the shale specimens at the final damage, and it was found that the damage was more intense and the fracture network was more complex at high dip angles, and there was an angular threshold.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3