Affiliation:
1. Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science Shanghai University Shanghai China
2. College of Mechanical and Electrical Engineering Wenzhou University Wenzhou China
Abstract
AbstractA novel method of combination of wavelet‐based boundary element method (WBEM) with frequency‐independent fundamental solutions is proposed to determine the band structures of fluid–solid phononic crystals (PCs) with square and triangular lattices. Integral equations established are based on the frequency‐independent fundamental solutions, which can avoid nonlinear eigenvalue problems and reduce computing time. Domain integral terms arising from the use of frequency‐independent fundamental solutions are handled with the radial integration method (RIM) and dual reciprocity method (DRM), respectively. The results show the lower precision in high frequency domain of using RIM to handle domain integral terms than that of using DRM, which can be solved by increasing Gauss point. The B‐spline wavelet on the interval and wavelet coefficients are applied to approximate the physical boundary conditions. It is proved that coupling conditions between matrix and scatterers and Bloch theorem are also applicable to wavelet coefficients. Some small matrix entries generated by wavelet vanishing moment characteristics are truncated by the provided matrix compression technique, and the influence of compressed matrices on the results is studied. Furthermore, the final Eigen equations constructed are modified to avoid numerical instability. Some examples are provided to demonstrate the accuracy and efficiency of the proposed method.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,General Engineering,Numerical Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献