Affiliation:
1. Department of Physics, Faculty of Mathematics and Natural Sciences Universitas Indonesia Depok Indonesia
2. Department of Physics, Faculty of Mathematics and Natural Sciences University of Riau Pekanbaru Indonesia
3. Institute of Microengineering and Nanoelectronics (IMEN) Universiti Kebangsaan Malaysia Bangi Malaysia
4. Department of Electrical Engineering, Faculty of Technology and Computer Science Prima University of Indonesia Medan Indonesia
Abstract
AbstractMolybdenum disulfide (MoS2), a promising two‐dimensional photothermal material, possesses the capability to convert solar irradiation into thermal energy. This conversion is beneficial for processes like wastewater treatment and seawater desalination. Nevertheless, the influence of the surface chemical properties of MoS2, particularly its wettability, on the evaporation rate of water confined to the surface remains unexplored. In our study, we demonstrate that the wettability degree of MoS2 significantly influences its water evaporation rate performance. Interestingly, this parameter can be simply and accurately modulated by altering the synthesis time of MoS2. We synthesized MoS2 via a simple hydrothermal method at three different durations: 16, 20, and 24 h, at 200°C. Subsequently, we impregnated the resultant MoS2 onto air‐laid paper (ALP), forming a solar‐driven evaporator system. We found that the MoS2 nanosheets synthesized within the shortest duration (MoS2‐16 h) exhibited the highest evaporation rate of 1.77 kg m−2 h−1, along with 92% energy efficiency. MoS2‐16 h resulted in MoS2 rich in defects, featuring the largest surface area and the smallest contact angle. The hydrophilic areas of MoS2‐16 h facilitated the continuous diffusion of water molecules through defect sites, treating them as contact lines. Additionally, the expansive surface area introduced a larger region for light absorption, enhancing water‐solid interactions. The presence of molybdenum oxide on the surface of the nanosheet system also contributed to superior wettability behavior. Notably, all the tested MoS2/ALP systems in this study displayed excellent performance in salt rejection and heavy metal ion concentration reduction.
Subject
General Environmental Science,Waste Management and Disposal,Water Science and Technology,General Chemical Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,Environmental Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献