Green pathway to the synthesis of some spirooxindole derivatives using NGO/PMA as a new and effective solid acid catalyst

Author:

Palizi Narjes1ORCID,Moradi Leila1ORCID

Affiliation:

1. Department of Organic Chemistry, Faculty of Chemistry University of Kashan Kashan 8731753153 Iran

Abstract

Heteropoly acids as nontoxic, dual Lewis–Brønsted acids with high thermal stability can develop acid‐catalyzed reactions. Combining these catalysts with other materials is of great interest to enhance their efficiency and capability. Despite all the outstanding properties of heteropoly acids, their solubility in water and most organic solvents limits their application. So, in presented research, immobilization of phosphomolybdic acid (PMA) on prepared N‐doped graphene oxide (NGO/PMA) was done to synthesize a solid acid, green and effective catalyst for the multicomponent synthesis of three kinds of spirooxindole structures. The preparation of new NGO‐based solid acid catalyst was performed through a three‐step method and identified by FTIR, TEM, mapping elemental analysis, SEM, EDX, and XRD techniques. Reusability of the catalyst, short reaction times (1:20–2 h), green condition, and easy workup as well as high yield of products (90–95%) are some merits of this research.

Publisher

Wiley

Subject

Inorganic Chemistry,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3