A performance‐based seismic loading protocol: The generated sequential ground motion

Author:

Golestani Maryam1,Alam M. Shahria1,Calvi Gian Michele2

Affiliation:

1. Applied Lab for Advanced Materials & Structures (ALAMS), School of Engineering The University of British Columbia Kelowna Canada

2. Centre for Training and Research on Reduction of Seismic Risk (ROSE Centre) University School for Advanced Studies (IUSS) Pavia Italy

Abstract

AbstractA realistic performance‐based seismic loading protocol called generated sequential ground motion (GSGM) has been developed in this paper. GSGM is a ground motion fabricated from segments of real recorded ground motions that could enable the introduction of performance‐based seismic assessment and design to experimental testing in setups such as shaking table testing. It can also significantly reduce the number of nonlinear time history analyses required in performance‐based seismic design. The protocol optimizes the behavioral information output of an experimental test or numerical analysis by incorporating dynamic demands corresponding to design limit states with different probabilities of exceedance (i.e. 10%, 5%, and 2% in 50 years) in a single record. In addition, since the segments are matched to relevant target spectra, the number of ground motions required to estimate the mean response is reduced. This paper presents the algorithm developed to produce the GSGM. The capability of the GSGM to replicate the structural responses produced by code‐compliant suites, and a suite of 100 ground motions as a more robust estimation of the actual response is investigated. The results of the case study bridge pier show that the drift variation of the GSGMs compared to code‐compliant suites is within 10%. Compared to the estimate of the actual response, the drift variation of GSGMs and the code‐compliant suites is 20% and 15%, respectively, and the damage variation is 30% and 15%, respectively. Furthermore, considering other relevant intensity measures when producing GSGMs can reduce these variations. This study suggests that the GSGM can replicate structural responses of the current code procedures.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3