Green synthesis of silver‐doped metal hexacyanoferrates nanostructures for efficient cleanup of endocrine‐disrupting pesticides

Author:

Rani Manviri1ORCID,Choudhary Sudha1,Shanker Uma2ORCID

Affiliation:

1. Department of Chemistry Malaviya National Institute of Technology Jaipur India

2. Department of Chemistry Dr B R Ambedkar National Institute of Technology Jalandhar India

Abstract

AbstractHerein, inexpensive and eco‐friendly approach for the green synthesis of silver‐doped metal hexacyanoferrates (Ag@MHCFs) nanocomposite using green tea extract has been reported. Silver‐doped MHCF nanocatalysts were used to photo‐degradation endocrine disruptor pesticides, namely endosulfan (ES) and atrazine (AT), from water under direct Sunlight. Spectroscopic and electron microscopic techniques confirmed the successful synthesis of nanomaterials. Ag@FeHCF observed maximum degradation efficiency due to their high surface area (89.3 m2g−1), significant zeta potential (−43.4 mV), lower band gap (1.5 eV), and low photoluminescence intensity as compared to other Ag doped MHCFs. Best degradation results showed with concentration amount (5 mg L−1), dose (20 mg of ES; 15 mg of AT), at neutral pH under sunlight irradiation. Degradation up to 98% for ES and 96% for AT was reported. The degradation ensued by Langmuir adsorption and first‐order kinetics. GC–MS analysis showed the degradation of pesticides into CO2, H2O, and harmless minor metabolites under Sunlight. Ag@FeHCF have indicated high reusability (n = 10), ensuring their charge separation, stability, and sustainability. Ag@MHCF nanoparticles may show as substitute catalysts for industrial use with a fervent scope.

Publisher

Wiley

Subject

General Environmental Science,Waste Management and Disposal,Water Science and Technology,General Chemical Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3