Glycogen‐binding protein STBD1: Molecule and role in pathophysiology

Author:

Tang Qiannan1,Liu Meiqing2,Zhao Hong3,Chen Linxi1ORCID

Affiliation:

1. Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology Hengyang Medical School, University of South China Hengyang China

2. Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University Kunming China

3. Nursing College, Hengyang Medical School University of South China Hengyang Hunan China

Abstract

AbstractStarch‐binding domain‐containing protein 1 (STBD1) is a glycogen‐binding protein discovered in skeletal muscle gene differential expression that is pivotal to cellular energy metabolism. Recent studies have indicated that STBD1 is involved in many physiological processes, such as glycophagy, glycogen accumulation, and lipid droplet formation. Moreover, dysregulation of STBD1 causes multiple diseases, including cardiovascular disease, metabolic disease, and even cancer. Deletions and/or mutations in STBD1 promote tumorigenesis. Therefore, STBD1 has garnered considerable interest in the pathology community. In this review, we first summarized the current understanding of STBD1, including its structure, subcellular localization, tissue distribution, and biological functions. Next, we examined the roles and molecular mechanisms of STBD1 in related diseases. Based on available research, we discussed the novel function and future of STBD1, including its potential application as a therapeutic target in glycogen‐related diseases. Given the significance of STBD1 in energy metabolism, an in‐depth understanding of the protein is crucial for understanding physiological processes and developing therapeutic strategies for related diseases.

Publisher

Wiley

Subject

Cell Biology,Clinical Biochemistry,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3