Advances in a measurement method of rainfall kinetic power and momentum affecting soil erosion processes

Author:

Carollo F. G.1,Serio M. A.1ORCID,Pampalone V.1ORCID,Ferro V.12ORCID

Affiliation:

1. Department of Agricultural, Food and Forest Sciences University of Palermo Palermo Italy

2. NBFC, National Biodiversity Future Center Palermo Italy

Abstract

AbstractRainfall is one of the factors affecting soil erosion, and rainfall kinetic energy or momentum is used to represent the capability of the precipitation to erode soil, named rainfall erosivity. Accurate measurements of rainfall erosivity are useful for a reliable prediction of soil loss. Rainfall momentum and kinetic energy, both calculated per unit time and area, can be obtained using terminal raindrop velocity and the drop size distribution (DSD) measured by disdrometers, which are instruments expensive and not suitable for large scale use. An innovative patented method to measure the rainfall energy is based on the estimation of DSD by simultaneous detection, in a given time interval, of the rainfall intensity I and the number N of raindrops that hit a specific piezoelectric surface. In this paper, advances of this method are presented. In particular, two new theoretical procedures to estimate the parameters μ and Λ of Ulbrich's distribution, that allow for the calculation of the rainfall kinetic energy and momentum, are proposed. Both procedures (Scenario 1 and 2) are based on the frequency distribution of the momentum M(D) of raindrops detected in a sampling time interval. Specifically, in the Scenario 1, μ and Λ are estimated by using I, N and the standard deviation, s(D), of the drop diameters obtained from the measured momentum distribution. In the Scenario 2 the parameters are estimated using I, N and the mean value, m(D), of the drop diameters deriving from the momentum distribution. The reliability of the proposed procedures was tested using DSD measurements recorded in three different experimental sites. The developed analysis demonstrated that Scenario 2 is the best method to estimate μ and Λ, and to reproduce the DSD, accordingly. The proposed method, associated with a patented device, not yet build, will allow the direct measurement of the rainfall energy characteristics, which are usually roughly estimated from rainfall intensity. The possibility to easily measure these energy variables can support the development of research in the field of soil erosion and, in general, of hydrogeological instability. In particular, the proposed measurement method and the construction of the device could stimulate the scientific community to deepen the study of the effect of the rainfall energy on soil erosion for improving the predictive capability of water erosion models.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3