Seeing the floods through the trees: Using adaptive shortwave infrared thresholds to map inundation under wooded wetlands

Author:

Lymburner Leo1ORCID,Ticehurst Catherine2,Adame Maria Fernanda3,Sengupta Ashmita2,Kavehei Emad4

Affiliation:

1. Digital Earth Australia Space Division, Geoscience Australia Canberra Australia

2. Commonwealth Scientific Industrial Research Organisation Environment Business Unit Canberra Australia

3. Australian Rivers Institute Griffith University Brisbane Australia

4. City of Moreton Bay Caboolture Australia

Abstract

AbstractAccurate information about the extent, frequency and duration of forest inundation is required to inform ecological, biophysical and hydrological models and enables floodplain managers to quantify the efficacy of flood mitigation/modification activities. Open water classifiers derived from optical remote sensing typically underestimate or fail to detect floodplain forest inundation. This paper presents a new method for detecting forest inundation dynamics using freely available Landsat and Sentinel 2 data, referred to as short‐wave infrared mapping under vegetation. The method uses a dynamic threshold that accounts for the additional shortwave infrared reflectance caused by the presence of tree canopies over floodwater. The method is demonstrated at five Ramsar listed River Red Gum floodplain forest wetlands in southeastern Australia. Accuracy assessment based on independent drone imagery from a wide range of vegetated wetlands showed an absolute accuracy of 67%–70% and a fuzzy accuracy of 81%–83%. We found the method is conservative, and underestimates inundation (16%–18%) but very rarely misclassifies dry pixels as inundated (0.3%–0.6%). When compared to river gauge data, the method shows similar trends to an open water classifier (i.e., the area of inundated vegetation increases with increasing river height). The method is conservative compared to lidar‐based floodplain inundation models but can be applied wherever cloud‐free scenes of Landsat or Sentinel 2 have been acquired, thereby enabling floodplain managers with the ability to quantify changes in inundation dynamics in places/time‐periods where lidar is unavailable.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3