An OpenMP‐based breadth‐first search implementation using the bag data structure

Author:

Gonzaga de Oliveira S. L.1ORCID,Santana M. I.2,Brandão D. N.3,Osthoff C.4

Affiliation:

1. Instituto de Ciência e Tecnologia Universidade Federal de São Paulo São Paulo Brazil

2. Computer Science Department Universidade Federal de Lavras Minas Gerais Brazil

3. Department of Computer Science Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro Brazil

4. Centro Nacional de Processamento de Alto Desempenho Laboratório Nacional de Computação Científica Rio de Janeiro Brazil

Abstract

SummaryThe breadth‐first search procedure is an algorithm that traverses the vertices of a graph, determining the distance from each vertex to the initial vertex. The distance is infinite for a non‐reachable vertex from the starting vertex. Despite having an efficient serial version, this important algorithm is irregular, making its effective parallel implementation a daunting task. This paper shows the results of an OpenMP‐based implementation of the breadth‐first search procedure using the bag data structure. Furthermore, the code relied on the C++ programming language. This paper reimplements an existing proposal coded using the Cilk++ programming language. The experiments relied on 32 strongly connected graphs and 31 disconnected graphs in executions performed on two machines. The first machine contained 28 cores and two threads per core. The second machine comprised 48 processing cores, with hyperthreading disabled. Regarding the serial version, the parallel implementation yielded a speedup of up to 20× when using 28 processing cores and up to 25× when using 56 threads in tests performed on a machine with the first generation of Intel® Xeon® Scalable processors. Furthermore, the new parallel implementation yielded speedups of up to 45× when using 48 cores in experiments performed on a machine with the second generation of Intel® Xeon® Scalable processors.

Publisher

Wiley

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3