Cheminformatics and systems pharmacology approaches to unveil the potential plant bioactives to combat COVID‐19

Author:

Muralitharan Dhivyadharshini1,Varadharajan Venkatramanan2,Venkidasamy Baskar3

Affiliation:

1. Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University Chennai India

2. Department of Biotechnology PSG College of Technology Coimbatore India

3. Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University Chennai India

Abstract

AbstractCOVID‐19 was a global pandemic in the year 2020. Several treatment options failed to cure the disease. Thus, plant‐based medicines are becoming a trend nowadays due to their less side effects. Bioactive chemicals from natural sources have been utilised for centuries as treatment options for a variety of ailments. To find out the potent bioactive compounds to counteract COVID‐19, we use systems pharmacology and cheminformatics. They use the definitive data and predict the possible outcomes. In this study, we collected a total of 72 phytocompounds from the medicinally important plants such as Garcinia mangostana and Cinnamomum verum, of which 13 potential phytocompounds were identified to be active against the COVID‐19 infection based on Swiss Target Prediction and compound target network analysis. These phytocompounds were annotated to identify the specific human receptor that targets COVID‐19‐specific genes such as MAPK8, MAPK14, ACE, CYP3A4, TLR4 and TYK2. Among these, compounds such as smeathxanthone A, demethylcalabaxanthone, mangostanol, trapezifolixanthone from Garcinia mangostana and camphene from C. verum were putatively target various COVID‐19‐related genes. Molecular docking results showed that smeathxanthone A and demethylcalabaxanthone exhibit increased binding efficiency towards the COVID‐19‐related receptor proteins. These compounds also showed efficient putative pharmacoactive properties than the commercial drugs ((R)‐remdesivir, favipiravir and hydroxychloroquine) used to cure COVID‐19. In conclusion, our study highlights the use of cheminformatics approach to unravel the potent and novel phytocompounds against COVID‐19. These phytocompounds may be safer to use, more efficient and less harmful. This study highlights the value of natural products in the search for new drugs and identifies candidates with great promise.

Publisher

Wiley

Subject

Molecular Biology,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3