Catalysis Under Alternating Magnetic Field: Rethinking the Origin of Enhanced Hydrogen Evolution Activities

Author:

Liu Sitong12,Zhang Yudi13,Sun Wen13,Ma Dandan4,Ma Jinfu4,Wei Zhiyang13,Huo Juntao13,Zhang Dengsong2,Li Guowei1ORCID

Affiliation:

1. CAS Key Laboratory of Magnetic Materials and Devices Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China

2. State Key Laboratory of Advanced Special Steel School of Materials Science and Engineering International Joint Laboratory of Catalytic Chemistry College of Sciences Shanghai University Shanghai 200444 China

3. University of Chinese Academy of Sciences 19 A Yuquan Rd, Shijingshan District Beijing 100049 China

4. School of Materials Science and Engineering North Minzu University Yinchuan 750021 China

Abstract

AbstractMagnetic fields are proposed to be a clean and powerful tool to boost the heterogeneous reaction processes, from the simple two‐electron transfer hydrogen evolution to the complicated proton‐coupling of multi‐electron transfer reactions. Although many mechanisms are proposed to explain the field‐assistant enhancement of activities, it remains an open question of how to understand the contradictory experiment results. In this study, the interplay between the alternating magnetic field (AMF) and the working electrodes from the viewpoint of their relative geometric positions is investigated. It is found that the HER current is almost doubled at an AMF of 25 mT when Pt foil and AMF are parallelly arranged, which is more significant than the perpendicularly arranged configuration. A significant increase in solution resistance is observed, which is in contradiction to previous works. The changing of currents with the AMF strength is investigated for the diamagnetic Cu, ferromagnetic Ni, and paramagnetic Ti and Pt wire, all suggesting the vital role of the induced electromotive force, which is a result of the relative geometric positions between the electrode and AMF. The findings provide an alternative mechanism for the magnetic field‐assisted electrocatalytic processes, which is helpful for the rational design of high‐performance catalysts.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3