Distinct Composition‐Dependent Topological Hall Effect in Mn2‐xZnxSb

Author:

Nabi Md Rafique Un12ORCID,Li Yue3ORCID,te Velthuis Suzanne G. E.3ORCID,Chhetri Santosh Karki1,Upreti Dinesh1,Basnet Rabindra14,Acharya Gokul1,Phatak Charudatta35ORCID,Hu Jin126ORCID

Affiliation:

1. Department of Physics University of Arkansas Fayetteville AR 72701 USA

2. MonArk NSF Quantum Foundry University of Arkansas Fayetteville AR 72701 USA

3. Materials Science Division Argonne National Laboratory Lemont IL 60439 USA

4. Department of Chemistry & Physics University of Arkansas at Pine Bluff Pine Bluff AR 71603 USA

5. Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA

6. Materials Science and Engineering Program Institute for Nanoscience and Engineering University of Arkansas Fayetteville AR 72701 USA

Abstract

AbstractSpintronics, an evolving interdisciplinary field at the intersection of magnetism and electronics, explores innovative applications of electron charge and spin properties for advanced electronic devices. The topological Hall effect (THE), a key component in spintronics, has gained significance due to emerging theories surrounding noncoplanar chiral spin textures. This study focuses on Mn2‐xZnxSb, a material crystalizing in centrosymmetric space group with rich magnetic phases tunable by Zn contents. Through comprehensive magnetic and transport characterizations, we found that the high‐Zn (x > 0.6) samples display THE which is enhanced with decreasing temperature, while THE in the low‐Zn (x < 0.6) samples show an opposite trend. The coexistence of those distinct temperature dependencies for THE suggests very different magnetic interactions/structures for different compositions and underscores the strong coupling between magnetism and transport in Mn2‐xZnxSb. The findings contribute to understanding topological magnetism in centrosymmetric tetragonal lattices, establishing Mn2‐xZnxSb as a unique platform for exploring tunable transport effects and opening avenues for further exploration in the realm of spintronics.

Funder

Directorate for Geosciences

Basic Energy Sciences

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3