Elucidating the Role of Dimensionality on the Electronic Structure of the Van der Waals Antiferromagnet NiPS3

Author:

DiScala Michael F.1ORCID,Staros Daniel2ORCID,de la Torre Alberto1,Lopez Annette1,Wong Deniz3,Schulz Christian3,Barkowiak Maciej3,Bisogni Valentina4,Pelliciari Jonathan4,Rubenstein Brenda2ORCID,Plumb Kemp W.1ORCID

Affiliation:

1. Department of Physics Brown University Providence RI 02912 USA

2. Department of Chemistry Brown University Providence RI 02912 USA

3. Department of Dynamics and Transport in Quantum Materials Helmholtz‐Zentrum Berlin für Materialen und Energie Albert‐Einstein‐Strasse 15 12489 Berlin Germany

4. National Synchrotron Light Source II Brookhaven National Laboratory Upton NY 11973 USA

Abstract

AbstractThe sustained interest in investigating magnetism in the 2D limit of insulating antiferromagnets is driven by the possibilities of discovering, or engineering, novel magnetic phases through layer stacking. However, due to the difficulty of directly measuring magnetic interactions in 2D antiferromagnets, it is not yet understood how intralayer magnetic interactions in insulating, strongly correlated, materials can be modified through layer proximity. Herein, the impact of reduced dimensionality in the model van der Waals antiferromagnet NiPS3 is explored by measuring electronic excitations in exfoliated samples using Resonant Inelastic X‐ray Scattering (RIXS). The resulting spectra shows systematic broadening of NiS6 multiplet excitations with decreasing layer count from bulk down to three atomic layers (3L). It is shown that these trends originate from a decrease in transition metal‐ligand and ligand–ligand hopping integrals, and by charge‐transfer energy evolving from Δ = 0.83 eV in the bulk to 0.37 eV in 3L NiPS3. Relevant intralayer magnetic exchange integrals computed from the electronic parameters exhibit a decrease in the average interaction strength with thickness. This study underscores the influence of interlayer electronic interactions on intralayer ones in insulating magnets, indicating that magnetic Hamiltonians in few‐layer insulating magnets can greatly deviate from their bulk counterparts.

Funder

National Science Foundation

U.S. Department of Energy

Basic Energy Sciences

National Energy Research Scientific Computing Center

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3