Highly Efficient Spin Transport in a Paramagnetic Insulator at Room Temperature

Author:

Zhu Zhaozhao12ORCID,Bai He34,Li Zhuolin25,Gao Yang6,Ke Jintao25,Li Guansong25,Bi Linzhu25,Zhu Tao23,Cai Jian‐Wang25,Zhang Ying12

Affiliation:

1. Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China

2. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China

3. Spallation Neutron Source Science Center Institute of High Energy Physics Chinese Academy of Sciences Dongguan 523803 China

4. Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

5. School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China

6. School of Materials Science and Engineering Anhui University Hefei 230002 China

Abstract

AbstractThe exploration of new materials exhibiting excellent spin transport properties, particularly those capable of efficiently transmitting pure spin currents at room temperature, is a crucial aspect of spintronics. This work reports the observation of room‐temperature spin transport in a paramagnetic insulator Gd3Ga5O12 (GGG). By measuring the longitudinal spin Seebeck voltage, spin Hall magnetoresistance, and anomalous Hall resistance in a Y3Fe5O12 (YIG)/GGG/Pt heterostructure at room temperature, the spin current is found to propagate in GGG up to a distance of 7 nm through the paramagnons, which are the collective excitations of the local spin within the paramagnet. Remarkably, this spin propagation phenomenon occurs at a small magnetic field and irrespective of whether the spin current injected into GGG is thermally induced from YIG or electrically generated through the spin Hall effect of Pt. Moreover, the inclusion of a thin GGG spacer layer increases the thermal spin current from YIG to Pt by 31%. Calculations based on the diffusive magnon transport model indicate high spin conductance at the GGG/Pt interface. These findings highlight the potential of a wide range of paramagnetic materials in facilitating spin transport and advancing the development of spintronic devices.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3