Affiliation:
1. Institute of Materials Research German Aerospace Center (DLR) 51147 Linder Hoehe Colgone Germany
2. Energy Conversion Research Center Electrical Materials Research Division Korea Electrotechnology Research Institute (KERI) Changwon Seongsan‐gu 51543 South Korea
3. Institute of Inorganic and Analytical Chemistry Justus Liebig University 35390 Giessen Germany
4. Institute of Technology for Nanostructures (NST) Faculty of Engineering and CENIDE University of Duisburg‐Essen 47057 Duisburg Germany
Abstract
AbstractThe enormous progress achieved with high‐performance thermoelectric materials has yet to be implemented in high‐performance devices. The bottleneck for this is the material‐specific design of the interface between the thermoelectric material and the electrical connections, particularly identifying suitable contacting electrodes. This has mainly been empirical, slowing down device maturation due to the vast experimental space. To overcome this, an electrode pre‐selection method based on first‐principles electronic structure calculations of charged defect formation energies is established in this work for the first time. Such method allows to predict thermoelectric leg degradation due to impurity diffusion from the electrode into the thermoelectric material and formation of charge carrier traps, causing a majority carrier compensation and performance deterioration. To demonstrate the feasibility of this approach, the charged point defect formation energies of relevant metal electrodes with Mg2(Si,Sn) are calculated. Five hundred ten defect configurations are investigated, and the interplay between intentional doping and electrode‐induced point defects is predicted. These predictions are compared with Seebeck microprobe measurements of local carrier concentrations near the Mg2(Si,Sn)‐electrode interface and a good match is obtained. This confirms the feasibility of electrode screening based on defect formation energy calculations, which narrows down the number of potential electrodes and accelerates device development.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献