Affiliation:
1. State Key Laboratory of Millimeter Waves School of Information Science and Engineering Southeast University Nanjing 210096 P. R. China
2. Department of Electronic and Electrical Engineering University College London London WC1E 7JE UK
Abstract
AbstractIn recent years, topological physics of classical waves in artificial crystals has become an emerging field of research. While Dirac cones and valley‐related physics are conventionally studied in these systems with C6v and C3v point‐group symmetries, here analog quantum valley Hall and quantum spin Hall plasmons in graphene metasurfaces with lower point‐group symmetries are explored. First, it is shown that a single‐layer graphene sheet with rectangle holes respecting to the C2v point group symmetry can host a mirror (σv) symmetry‐protected Dirac cone along the X–M edge of the Brillouin zone. Then we demonstrate that introducing further circular holes to the graphene sheet can break the mirror symmetry (i.e., reducing C2v symmetry to C1v) and thus gap out the Dirac cone, which allows us to explore the valley and layer‐pseudospin related topological plasmons in these graphene metasurfaces with low point group symmetry. Valley‐locking unidirectional propagations along the domain–wall interface of a single‐layer graphene metasurface and layer‐pseudospin converter in a double‐layer graphene metasurface are explicitly demonstrated for graphene plasmons in the THz range. This work provides a new design principle for exploring Dirac cones, valley, and pseudospin related physics using much lower point‐group symmetries.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Natural Science Foundation of Jiangsu Province
Higher Education Discipline Innovation Project
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献