Spatially Resolved High Voltage Kelvin Probe Force Microscopy: A Novel Avenue for Examining Electrical Phenomena at Nanoscale

Author:

McCluskey Conor J.1,Sharma Niyorjyoti1,Maguire Jesi R.1,Pauly Serene1,Rogers Andrew1,Lindsay TJ1,Holsgrove Kristina M.1,Rodriguez Brian J.2,Soin Navneet34,Gregg John Marty1,McQuaid Raymond G. P.1,Kumar Amit1ORCID

Affiliation:

1. Centre for Quantum Materials and Technologies School of Mathematics and Physics Queen's University Belfast Belfast BT7 1NN UK

2. School of Physics University College Dublin Belfield Dublin 4 Ireland

3. School of Engineering Ulster University 2–24 York Street Belfast BT15 1AP UK

4. School of Science Computing and Engineering Technologies Swinburne University of Technology P.O. Box 218 Hawthorn VIC 3122 Australia

Abstract

AbstractKelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use in the study of a range of materials phenomena. In its conventional form, KPFM frustratingly precludes imaging samples or scenarios where large surface potential or surface potential gradients exist outside the typical ±10 V window. If the potential regime measurable via KPFM can be expanded, to enable precise and reliable metrology, through a high voltage KPFM (HV‐KPFM) adaptation, it can open up pathways toward a range of novel experiments, where the detection limit of regular KPFM has so far prevented the use of the technique. In this work, HV‐KPFM is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials (positive temperature coefficient of resistivity ceramics, charge storage fluoropolymers, and pyroelectrics) where accurate, spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight. The results demonstrate that HV‐KPFM can be used as an effective tool to fill in existing gaps in surface potential measurements while also opening routes for novel studies in materials physics.

Funder

Engineering and Physical Sciences Research Council

Science Foundation Ireland

UK Research and Innovation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3