Affiliation:
1. CSIR‐National Physical Laboratory Dr. K.S. Krishnan Marg New Delhi 110012 India
2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
Abstract
AbstractUltralow SET and RESET voltage are essential for high‐density, low‐power, and small heat dissipation nonvolatile random‐access memory (NVRAM) elements. A nanoscale polycrystalline Hf0.75Zr0.25O2 (HZO) thin films on Pt/Si substrate are fabricated and investigated for suitability for bipolar resistive switching. The device illustrates monoclinic and tetragonal/orthorhombic phases with weak ferroelectricity and robust resistive switching. Small remanent polarization (≈0.1 μC cm−2) may assist in the height reduction of barrier height and ease the electron for transport. Remarkably, the Al/HZO/Pt/Si device, consisting of thin films with 10 and 5 nm thicknesses, exhibits a switching voltage below −30 mV from a low‐resistance state (LRS) to a high‐resistance state (HRS). It shows a significant ROFF/RON ratio of 106, making it suitable for low power consumption and minimal heat dissipation devices. Moreover, the utilization of an ultrathin film (5 nm) results in an improved reduction (< 0.7 V) of the operating window at the positive voltage. Direct tunneling and the Fowler–Nordheim tunneling model are performed in current–voltage (I–V) data to study the charge transportation behavior over a trapezoidal and triangular potential barrier. These results of the HZO candidate may stimulate the futuristic nonvolatile resistive random‐access memory (ReRAM) in the optoelectronic industry.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献