Engineering Active Sites of 2D Materials for Active Hydrogen Evolution Reaction

Author:

Kim Jeong Hyo1,Lee Da Yeon1,Ling Ning2,Lee Yongjoon3,Yang Heejun3,Cho Suyeon1ORCID

Affiliation:

1. Division of Chemical Engineering and Materials Science Graduate Program in System Health Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea

2. Department of Energy Science Sungkyunkwan University Suwon 16419 Republic of Korea

3. Department of Physics Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea

Abstract

AbstractHydrogen evolution reaction (HER) is a promising clean and sustainable energy source with zero carbon emissions. Numerous studies have been conducted with versatile low dimensional materials, and the development of highly active electrochemical catalysts for HER is one of the most important applications of the materials in these studies. Despite such extensive research, the physical origin of the active catalytic performance of low dimensional materials remains unclear, and is distinguished from that of classical transition metal‐based catalysts. Here, recent studies on the intrinsic catalytic activity of 2D semimetals are reviewed, particularly among transition metal dichalcogenides (TMDs), highlighting promising strategies for the design of materials to further enhance their catalytic performance. One attractive approach for active HER involves fabricating single‐atom catalysts in the framework of TMDs. The electrochemical reaction at a catalytic atom for hydrogen evolution has typically been described by the Sabatier principle. Recent studies have focused on optimizing the Gibbs free energy for hydrogen adsorption via down‐sizing, alloying, hybridizing, hetero‐structuring, and phase boundary engineering, mostly with TMDs. The unique advantages of TMDs and their derivatives for HER are summarized, suggesting promising research directions for the design of low dimensional electrochemical catalysts for efficient HER and their energy applications.

Funder

National Research Foundation of Korea

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3