Homologous Self‐Assembled Superlattices: What Causes their Periodic Polarity Switching?

Author:

Thakur Varun1ORCID,Benafsha Dor1ORCID,Turkulets Yury1ORCID,Azulay Almog R.1ORCID,Liang Xin23ORCID,Goldman R. S.4ORCID,Shalish Ilan1ORCID

Affiliation:

1. School of Electrical Engineering Ben‐Gurion University Beer Sheva 8410501 Israel

2. Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 China

3. School of Nanoscience and Engineering University of Chinese Academy of Sciences Beijing 100049 China

4. Department of Materials Science and Engineering University of Michigan 2300 Hayward, St. Ann Arbor MI 48109 USA

Abstract

AbstractQuantum semiconductor structures are commonly achieved by bandgap engineering, which relies on the ability to switch from one semiconductor to another during their growth. Growth of a superlattice is typically demanding technologically. In contrast, accumulated evidence points to a tendency among a certain class of multiple‐cation binary oxides to self‐assemble spontaneously as superlattice structures. This class is dubbed the homologous superlattices. For a famous example, when a mixture of indium and zinc is oxidized, the phases of In‐O and ZnO separate in an orderly periodic manner, along the ZnO polar axis, with polarity inversion taking place between consecutive ZnO sections. The same structure is observed when the indium is replaced with other metals, and perhaps even in ZnO alone. This peculiar self‐assembled structure is attracting research over the past decade. The purpose of this study is to gain understanding of the physics underlying the formation of this unique structure. Here, an explanation is proposed for the long‐standing mystery of this intriguing self‐assembly in the form of an electrostatic growth phenomenon and a test of the proposed model is carried out on experimental data.

Funder

Bonfils-Stanton Foundation

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3