Dicationic ionic liquid‐grafted UiO‐66 as efficient catalyst for CO2 conversion into cyclocarbonate under cocatalyst‐free and solventless conditions

Author:

Li Fangfang1ORCID,Hou Xiaofang1ORCID,Zhou Ying‐Hua1ORCID

Affiliation:

1. The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241002 China

Abstract

CO2 chemical fixation offers a feasible approach for carbon mitigation and high‐value utilization, but it is still challenging to develop an efficient catalyst for CO2 conversion into cyclic carbonate. Herein, the triethylenediamine‐derived dicationic ionic liquids (DIL‐X, X = Cl, Br, and I) were grafted into UiO‐66 linkers through self‐assembly of Zr4+ ions and the mixed ligands of terephthalic acid and DIL‐bearing dicarboxylic acid, resulting in UiO‐66‐DIL‐Xn, (n designated as molar amount of the feeding DIL‐X). Their catalytic performance was evaluated by the epoxide cycloaddition reaction in the absence of solvent and cocatalyst. Among them, the UiO‐66‐DIL‐Cl0.4 catalyst exhibited outstanding performance, with a chloropropene carbonate yield of 92% and a high selectivity of 99% under 0.1 MPa CO2 at 110 °C for 16 h. Its high activity could be ascribed to the cooperativity among Lewis acidity of MOF nodes, the enhanced CO2 absorption, and the strong nucleophilicity offered by halogen ions of ionic liquid‐modified MOF. Moreover, UiO‐66‐DIL‐Cl0.4 presented excellent recyclability and substrate extension. A potential catalytic mechanism for the epoxide‐CO2 cycloaddition into cyclic carbonate has been proposed. This work will shed light on the rational design of functionalized MOFs‐based catalysts for CO₂ utilization.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3