Volatility forecasting for stock market index based on complex network and hybrid deep learning model

Author:

Song Yuping1ORCID,Lei Bolin12,Tang Xiaolong1,Li Chen3

Affiliation:

1. School of Finance and Business Shanghai Normal University Shanghai China

2. Faculty of Economics and Management East China Normal University Shanghai China

3. Zhongtai Securities Institute for Financial Studies Shandong University Jinan China

Abstract

AbstractThe existing literature on the volatility forecasting less considered the co‐movement among stock markets from the spatial dimension. This paper builds the hybrid convolutional neural networks (CNNs)–gated recurrent unit (GRU) model for volatility forecasting under high frequency financial data based on transaction information and the topological characteristics constructed through the complex network of multi‐market symbol patterns. The hybrid neural network CNN‐GRU combines the advantages of CNN automatically extracting features for the input indicators and GRU processing long and short‐term serially dependent features, which can better improve the forecasting accuracy. The empirical results show that with the integration of topological characteristics as the indicators based on complex network, the deep learning model has a significant improvement of one‐step and multi‐step volatility forecasting accuracy for the China's and the US stock markets. The research in this paper provides a complete index system from the spatial dimension and a more accurate and robust volatility forecasting method under the high‐frequency financial data.

Funder

National Natural Science Foundation of China

Ministry of Education

Shanghai Normal University

General Research Fund of Shanghai Normal University

Publisher

Wiley

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Strategy and Management,Computer Science Applications,Modeling and Simulation,Economics and Econometrics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3