Isotope effects of O2 consumption in a deep lake as means for understanding partitioning of O2 demand among microorganisms, particles, and sediment

Author:

Musan Israela1ORCID,Gildor Hezi1ORCID,Gonsiorczyk Thomas2ORCID,Grossart Hans‐Peter23ORCID,Luz Boaz1ORCID

Affiliation:

1. The Institute of Earth Sciences The Hebrew University of Jerusalem Jerusalem Israel

2. Department Plankton and Microbial Leibniz‐Institute of Freshwater Ecology and Inland Fisheries Stechlin Germany

3. Institute for Biochemistry and Biology Potsdam University Potsdam Germany

Abstract

AbstractThe isotopic ratio 18O/16O of dissolved O2 in aquatic systems is affected by the preferential biological uptake of 16O (ε). Studies over the past six decades reveal that during incubation experiments, the isotopic effect of microorganism respiration (εorganism) varies in the range of −18‰ to −22‰. In contrast, natural variations in the deep‐ocean O2 concentration and δ18O levels show a considerably weaker effect (~ −10‰). The differences between these observations have been explained to result from either O2 uptake by sediments or organic particles that, due to diffusion‐limited respiration, are expected to weakly fractionate oxygen isotopes, by mixing processes or by weak fractionation at low temperatures. To gain better insight, we studied oxygen demand and δ18O in the deep, cold hypolimnion of Lake Stechlin between 2018 and 2021 as well as in various laboratory incubations. Our incubation results demonstrate an εorganism of about −24‰. Simple model calculations demonstrate a sediment O2 demand isotope effect (εSOD) of about −8.4‰, and a variated water‐column O2 demand isotope effect (εWOD) which is lower than εorganism, ranging from −13.9‰ in 2019 to −23‰ in 2021. Accompanying experiments indicate that the lower magnitude of εWOD may be related to respiration at organic particles lending to a weaker fractionation effect. Thus, variations in εWOD may reflect a changing partitioning of hypolimnion oxygen uptake between suspended particles and their containing microorganisms. Based on own incubation experiments with Daphnia carcasses, we discuss how possible changes of particle rigidity might influence εWOD.

Funder

Israel Science Foundation

United States-Israel Binational Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3