Quantification of spatially localized MRS by a novel deep learning approach without spectral fitting

Author:

Zhang Yan1ORCID,Shen Jun1

Affiliation:

1. National Institute of Mental Health National Institutes of Health Bethesda Maryland USA

Abstract

PurposeTo propose a novel end‐to‐end deep learning model to quantify absolute metabolite concentrations from in vivo J‐point resolved spectroscopy (JPRESS) without using spectral fitting.MethodsA novel encoder‐decoder‐style neural network was created, which was trained to predict metabolite concentrations and individual component signals concurrently from 3T JPRESS data in the time domain. The training data set contained 100 000 samples created by spin‐density simulations using experimentally used RF pulses. Concentrations, phase, frequencies, linewidths, and T2 relaxation times in the training data set were varied over a large range with uniform distributions. Random synthesized noise and extraneous signals were added to the data set. Two thousand validation samples were created similarly to the training data set but with mean concentrations close to in vivo values. An in vivo test was conducted with 20 samples acquired from the human brain.ResultsBoth validation and in vivo test results showed that the proposed model successfully predicted metabolite concentrations as well as individual metabolite signals without involving spectral fitting, while extraneous peaks or unregistered signals were filtered out. Compared with the short‐TE spectral fitting by LCModel, the proposed method had the advantage that the undesired correlations between the estimated concentrations and noise levels and between metabolites were eliminated or substantially reduced.ConclusionThe proposed method provides a working deep learning model that directly maps in vivo JPRESS data to metabolite concentrations. Because spectral fitting is not used, the trained model does not depend on the assumptions associated with parameter tuning when applied to in vivo data.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3