Age‐related changes in root dynamics of a novel perennial grain crop

Author:

Woeltjen Stella1ORCID,Gutknecht Jessica1ORCID,Jungers Jacob2ORCID

Affiliation:

1. Department of Soil, Water and Climate University of Minnesota St. Paul Minnesota USA

2. Department of Agronomy and Plant Genetics University of Minnesota St. Paul Minnesota USA

Abstract

AbstractBackgroundStanding root biomass stocks are larger in the perennial grain intermediate wheatgrass (IWG; Thinopyrum intermedium [Host] Barkworth and Dewey) than annual spring wheat (Triticum aestivum L.). However, previous studies have not separated root growth from root decomposition, which presents a significant gap in our understanding of how roots can contribute to soil organic carbon (C) accrual or other soil properties through time.MethodsWe used paired sequential coring and root ingrowth cores to measure standing root stock, new root production, root decomposition, and decomposed root C and N from 0 to 15 cm soil depth of 1‐year‐old IWG (IWG‐1), 2‐year‐old IWG (IWG‐2), and annual spring wheat.ResultsStanding root stock was 3.2–6.5 and 6.3–9.9 times higher in IWG‐1 and IWG‐2 than wheat. Total root production was 1.7 times greater in IWG‐1 than IWG‐2. Conversely, root decomposition almost doubled from 1.39 to 2.43 kg m−3 between IWG‐1 and IWG‐2.ConclusionsIn IWG, decreased root production and increased root decomposition with stand age suggest a change in growth strategy that could reduce the contribution of root‐derived C to stabilized soil C pools as IWG stands age.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3