Successful plant growth in acid mine drainage‐impacted soil using pot‐based experiments with waste amendments

Author:

Fernández‐Landero Sandra1ORCID,Fernández‐Caliani Juan Carlos1ORCID,Giráldez María Inmaculada2,Hidalgo Pablo J.3ORCID,Morales Emilio2

Affiliation:

1. Department of Earth Sciences University of Huelva Huelva Spain

2. Department of Chemistry University of Huelva Huelva Spain

3. Department of Integrated Sciences, RENSMA University of Huelva Huelva Spain

Abstract

AbstractThis paper addresses the challenge of remediating soil impacted by acid mine drainage (AMD) using an innovative and sustainable Technosol‐based approach to stabilize soil and facilitate vegetation recovery. The study assessed the effectiveness of Technosols made from recycled organic (water clarification sludge) and inorganic (siderurgical slags and red gypsum) wastes in mitigating the detrimental effects of AMD on soil properties, pore water chemistry, and plant growth through a 4‐month pot experiment. Technosols significantly improved soil health by neutralizing net acidity (296 mmol H+ kg−1), raising pH levels from extremely acidic (3.3) to mildly alkaline (7.7–8.0), and limiting the mobility of potentially toxic elements (PTEs). Dissolved Cu and Zn concentrations dropped from 80.21 and 72.08 mg L−1, respectively, to below 1 mg L−1 by the end of the monitoring period. The experiment identified several concomitant mechanisms of PTE retention, such as decreased dissolution of metal‐bearing minerals, precipitation reactions and adsorption onto Fe and Al (oxy)hydroxides. Aqueous speciation modelling indicated a decline in toxic metal forms (e.g. Al3+, AlSO4+, Cu2+, Zn2+ and H2AsO4) in soil pore water after treatment, thus reducing phytotoxicity. Additionally, waste amendments enhanced nutrient availability, with nitrate concentrations reaching up to 417 mg L−1, supporting seed germination and seedling establishment. The most effective Technosol, combining water treatment sludge and white steel slag (60:40 w/w), enabled robust growth of Brassica juncea. Principal component analysis showed a strong correlation between healthy plant responses (survival rate, plant height, leaf number, biomass production) and improved soil pore water parameters (pH, PTEs, aluminium, calcium, bicarbonate and nitrate ions), highlighting the benefits of waste amendments. These findings underscore the potential of waste‐derived Technosols in stabilizing AMD‐impacted soils and promoting thriving plant growth. However, further validation in field trials with diverse plant species is recommended for real‐world applications.

Funder

European Regional Development Fund

Horizon Therapeutics

HORIZON EUROPE Framework Programme

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3