Europium doped Sr2YNbO6 double perovskite phosphor for photoluminescence and thermoluminescence properties

Author:

Degda Naresh1ORCID,Patel Nimesh1ORCID,Verma Vishwnath1,Srinivas Mangalampalli1,Murthy Kota Venkata Ramana2,Haranath Divi3ORCID

Affiliation:

1. Luminescence Materials Laboratory, Department of Physics, Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara India

2. Display Materials Laboratory, Applied Physics Department, Faculty of Technology and Engineering The Maharaja Sayajirao University of Baroda Vadodara India

3. Department of Physics National Institute of Technology Warangal India

Abstract

AbstractA luminescent double perovskite phosphor Sr2YNbO6 doped with Eu3+ crystallized to the monoclinic phase and was synthesized successfully via a conventional high‐temperature combustion method. The formation of the crystal structure, phase purity, and surface morphology were studied using X‐ray diffraction patterns and scanning electron microscopy. The characteristic vibrations between the atoms of the functional groups present in phosphor were studied using Fourier transform infrared spectra analysis. The luminescence properties of the prepared phosphors were investigated in terms of photoluminescence (PL) and thermoluminescence (TL). PL excitation spectra exhibited charge transfer bands and the characteristic 4f6 transitions of Eu3+. A prominent PL emission was obtained for the phosphor doped with 4 mol% Eu3+ under the 396 nm excitation wavelength. PL emission quenching was observed for the higher doping concentrations due to a multipole–multipole interaction. A highly intense PL emission arose due to the hypersensitive 5D07F2 electric dipole transition of Eu3+ that dominated the emission spectra. The thermal stability of the phosphor was examined through temperature‐dependent PL. The TL properties of the Sr2YNbO6 double perovskites irradiated with a 90Sr beta source at different doses were measured. The double perovskite phosphors under study showed a linear dose–response with increasing beta dose, ranging from 1 Gy to 10 Gy. Trapping parameters of the TL glow curves were determined using Chen's peak shape method and computerized glow curve deconvolution (CGCD). CGCD fitting of the TL glow curves revealed that it was consisted of three major peaks and followed second‐order kinetics. The estimated activation energies were determined using different methods and were comparable and significant.

Publisher

Wiley

Subject

Chemistry (miscellaneous),Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3