Bayesian and deep‐learning models applied to the early detection of ovarian cancer using multiple longitudinal biomarkers

Author:

Abrego Luis12,Zaikin Alexey12,Marino Ines P.3,Krivonosov Mikhail I.45,Jacobs Ian1,Menon Usha6,Gentry‐Maharaj Aleksandra16,Blyuss Oleg178ORCID

Affiliation:

1. Department of Women's Cancer EGA Institute for Women's Health, University College London London UK

2. Department of Mathematics University College London London UK

3. Department of Biology and Geology, Physics and Inorganic Chemistry Universidad Rey Juan Carlos Madrid Spain

4. Research Center for Trusted Artificial Intelligence Ivannikov Institute for System Programming of the Russian Academy of Sciences Moscow Russia

5. Institute of Biogerontology Lobachevsky State University Nizhny Novgorod Russia

6. MRC Clinical Trials Unit University College London London UK

7. Wolfson Institute of Population Health Queen Mary University of London London UK

8. Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child's Health Sechenov First Moscow State Medical University (Sechenov University) Moscow Russia

Abstract

AbstractBackgroundOvarian cancer is the most lethal of all gynecological cancers. Cancer Antigen 125 (CA125) is the best‐performing ovarian cancer biomarker which however is still not effective as a screening test in the general population. Recent literature reports additional biomarkers with the potential to improve on CA125 for early detection when using longitudinal multimarker models.MethodsOur data comprised 180 controls and 44 cases with serum samples sourced from the multimodal arm of UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Our models were based on Bayesian change‐point detection and recurrent neural networks.ResultsWe obtained a significantly higher performance for CA125–HE4 model using both methodologies (AUC 0.971, sensitivity 96.7% and AUC 0.987, sensitivity 96.7%) with respect to CA125 (AUC 0.949, sensitivity 90.8% and AUC 0.953, sensitivity 92.1%) for Bayesian change‐point model (BCP) and recurrent neural networks (RNN) approaches, respectively. One year before diagnosis, the CA125–HE4 model also ranked as the best, whereas at 2 years before diagnosis no multimarker model outperformed CA125.ConclusionsOur study identified and tested different combination of biomarkers using longitudinal multivariable models that outperformed CA125 alone. We showed the potential of multivariable models and candidate biomarkers to increase the detection rate of ovarian cancer.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3