Prediction of wind energy with the use of tensor‐train based higher order dynamic mode decomposition

Author:

Li Keren1ORCID,Utyuzhnikov Sergey1ORCID

Affiliation:

1. Department of Fluids and Environment University of Manchester Manchester UK

Abstract

AbstractAs the international energy market pays more and more attention to the development of clean energy, wind power is gradually attracting the attention of various countries. Wind power is a sustainable and environmentally friendly resource of energy. However, it is unstable. Therefore, it is important to develop algorithms for its prediction. In this paper, we apply a recently developed algorithm that effectively combines the tensor train decomposition with the higher order dynamic mode decomposition (TT‐HODMD). The dynamic mode decomposition (DMD) is a data‐driven technique that does not need a prior mathematical model. It is based on the measurement data or time slots. As demonstrated, for prediction it is important to use the higher order DMD (HODMD). In turn, HODMD might lead to very large scale arrays that are sparse. The tensor train decomposition provides a highly efficient way to work with such arrays. It is demonstrated that the combined TT‐HODMD algorithm is capable of providing quite accurate prediction of wind power for months ahead.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3