Joint Gaussian graphical model estimation: A survey

Author:

Tsai Katherine1ORCID,Koyejo Oluwasanmi2ORCID,Kolar Mladen3ORCID

Affiliation:

1. Department of Electrical and Computer Engineering University of Illinois at Urbana‐Champaign Chicago Illinois USA

2. Department of Computer Science University of Illinois at Urbana‐Champaign Chicago Illinois USA

3. The University of Chicago Booth School of Business Chicago Illinois USA

Funder

Division of Information and Intelligent Systems

Publisher

Wiley

Subject

Statistics and Probability

Reference104 articles.

1. EEG-Informed fMRI: A Review of Data Analysis Methods

2. Andersen M. Winther O. Hansen L. K. Poldrack R. &Koyejo O.(2018).Bayesian structure learning for dynamic brain connectivity. In Proceedings of the twenty‐first international conference on artificial intelligence and statistics pp.1436–1446.

3. A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models

4. Rocket: Robust confidence intervals via kendall's tau for transelliptical graphical models;Barber R. F.;The Annals of Statistics,2018

5. Belilovsky E. Varoquaux G. &Blaschko M. B.(2016).Testing for differences in Gaussian graphical models: Applications to brain connectivity. In Advances in neural information processing systems volume 29 pp.595–603.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning High-Dimensional Differential Graphs From Multiattribute Data;IEEE Transactions on Signal Processing;2024

2. Latent Multimodal Functional Graphical Model Estimation;Journal of the American Statistical Association;2023-08-30

3. Testing the differential network between two gaussian graphical models with false discovery rate control;Journal of Statistical Computation and Simulation;2023-08-29

4. Network Differential in Gaussian Graphical Models from Multimodal Neuroimaging Data*;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

5. Joint Network Topology Inference Via a Shared Graphon Model;IEEE Transactions on Signal Processing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3