Data driven machine learning models for short‐term load forecasting considering electrical vehicle load

Author:

Gujjarlapudi Ch Sekhar1,Sarkar Dipu1ORCID,Gunturi Sravan Kumar2

Affiliation:

1. Department of Electrical and Electronics Engineering National Institute of Technology Nagaland 797103 India

2. Department of Electronics and Communication Engineering Koneru Lakshmaiah Education Foundation Hyderabad Telangana 500069 India

Abstract

AbstractElectric vehicles (EVs) are gaining popularity due to their fuel efficiency and ability to reduce greenhouse gas emissions. Significant penetration of EVs with unregulated charging, which can have a substantial impact on power networks. Accurate load predictions, including the charging of EVs are crucial for ensuring the cost‐effective and dependable operation of power systems. In order to estimate short‐term load in the presence of EV load, the XG (extreme gradient) boost algorithm is proposed and the effectiveness of the performances are checked against other models. A variety of distinct meteorological parameters and the electrical load pattern for the years 2017 and 2018 for Northeast India are used to train the machine learning classifier models. R‐squared value analyses are also performed to identify the most correlated input parameters that influence the results of various models. Analysis shows that temperature, cloud cover, heat index, dew point, wind chill, and perceived temperature are substantially connected with electricity consumption. The performance of XG boost is outperformed by comparing prediction results with decision tree, random forest, K nearest neighbors, and logistic regression. Three separate case studies were employed for verification using the precision, F1 score, sensitivity, specificity, and accuracy metrics. Our findings demonstrate that, in comparison to other forecasting models, XG Boost exhibits higher accuracy (83.84%, 81.51%, and 85.97%) and robust forecasts.

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning-based optimal distributed generation and electric vehicle load management;Proceedings of the Institution of Civil Engineers - Energy;2024-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3