A solution to the ill‐conditioning of gradient‐enhanced covariance matrices for Gaussian processes

Author:

Marchildon André L.1ORCID,Zingg David W.1

Affiliation:

1. Institute for Aerospace Studies University of Toronto Toronto Ontario Canada

Abstract

AbstractGaussian processes provide probabilistic surrogates for various applications including classification, uncertainty quantification, and optimization. Using a gradient‐enhanced covariance matrix can be beneficial since it provides a more accurate surrogate relative to its gradient‐free counterpart. An acute problem for Gaussian processes, particularly those that use gradients, is the ill‐conditioning of their covariance matrices. Several methods have been developed to address this problem for gradient‐enhanced Gaussian processes but they have various drawbacks such as limiting the data that can be used, imposing a minimum distance between evaluation points in the parameter space, or constraining the hyperparameters. In this paper a diagonal preconditioner is applied to the covariance matrix along with a modest nugget to ensure that the condition number of the covariance matrix is bounded, while avoiding the drawbacks listed above. The method can be applied with any twice‐differentiable kernel and when there are noisy function and gradient evaluations. Optimization results for a gradient‐enhanced Bayesian optimizer with the Gaussian kernel are compared with the use of the preconditioning method, a baseline method that constrains the hyperparameters, and a rescaling method that increases the distance between evaluation points. The Bayesian optimizer with the preconditioning method converges the optimality, that is, the norm of the gradient, an additional 5 to 9 orders of magnitude relative to when the baseline method is used and it does so in fewer iterations than with the rescaling method. The preconditioning method is available in the open source Python library GpGradPy, which can be found at https://github.com/marchildon/gpgradpy/tree/paper_precon.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Reference38 articles.

1. Taking the Human Out of the Loop: A Review of Bayesian Optimization

2. ErikssonD DongK LeeE BindelD WilsonAG.Scaling Gaussian process regression with derivatives. In: NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems; Canada 6868–6878.

3. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3