Development of an industrial sustainable process for wax esters production: enzyme immobilization, process optimization, and plant simulation

Author:

Montiel M. Claudia1ORCID,Serrano‐Arnaldos Mar1ORCID,Yagüe Clara1,Ortega‐Requena Salvadora1,Máximo Fuensanta1,Bastida Josefa1

Affiliation:

1. Departamento de Ingeniería Química, Facultad de Química, Campus de Espinardo Universidad de Murcia Murcia Spain

Abstract

AbstractBACKGROUNDAs a result of the ban on whaling, there has been a shortage of spermaceti, a natural product with applications in cosmetics and pharmaceuticals. A green and sustainable process for the biocatalytic synthesis of a wax ester mixture analogue to natural spermaceti is presented in this paper.RESULTSImmobilization of Candida antarctica lipase B by covalent binding to Purolite® Lifetech™ ECR8285 allowed for an immobilized derivative with 124.5 mg protein/g support (69.3% protein immobilization yield) that maintains 100% of its enzymatic activity after 12 months of cold storage and presents negligible loses of activity after 9 consecutive reaction cycles. The optimization of the synthesis process in a batch reactor resulted in conditions that, at 70 °C, 350 rpm, and 1.25% w/w of biocatalyst, achieved a conversion of 97% after 1 h of reaction. The simulation of a spermaceti production plant was carried out using the process simulation software aspenONE suite v10. The plant was designed for a continuous operation during 9 h per day, with a reactor of 20.25 L of working volume and a residence time of 1 h. The production of this plant would be 173.25 kg spermaceti/day, with a product purity of 99.55%.CONCLUSIONThe main novelty of this work is the design of a spermaceti production plant, using the most sustainable methodologies and resulting in a product with exceptional characteristics and minimal waste generation. Moreover, a new lipase immobilized derivative is also described. The good values of sustainability indicators point to the viability of its industrial implementation. © 2023 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).

Funder

Ministerio de Ciencia e Innovación

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Pollution,Waste Management and Disposal,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3