Comparative study on the tribological properties of poly(arylene ether nitrile)/polytetrafluoroethylene composites: The influence of filler size and testing conditions

Author:

Ding Weiyi1,Peng Xionghou2,Li Jixiang1,Heng Zhengguang1,Zhou Shengtai1ORCID,Zou Huawei1

Affiliation:

1. The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute Sichuan University Chengdu China

2. Xi'an Rare Metal Materials Institute Co. Ltd. Xi'an China

Abstract

AbstractIn this work, the influence of polytetrafluoroethylene (PTFE) filler size and testing conditions (i.e., air, water, and lubricating oil) on the tribological properties of poly(arylene ether nitrile) (PEN) was systematically investigated. The results showed that the addition of PTFE was beneficial to improve the tribological properties of PEN‐based composites which was related to the easier formation of transfer film on the surface of friction pair. Samples which were tested in water demonstrated a relatively higher friction coefficient (μ) and wear loss when compared with those tested in dry air and lubricating oil scenarios, which was attributed to the fact that friction induced heat and wear debris could be timely removed by water. In addition, the infiltration of water further reduced the interaction between PTFE filler and PEN, which aggravated the wear loss of sample blocks. When tested in lubricating oil, pure PEN showed the lowest wear loss when compared with that of PEN/PTFE composites. At a given content (20 wt%) of PTFE fillers, PEN/PTFE1.5μm exhibited the lowest μ in lubricating oil whereas PEN/PTFE5μm demonstrated the lowest specific wear loss in air condition (1.18 × 10−6 mm3/N·m). This work provided some useful information for the design and application of PTFE‐containing polymer composites that can be targeted in different lubrication scenarios in industrial fields.

Funder

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3