Synthesis of PEGylated amphiphilic block copolymers with pendant linoleic moieties by combining ring‐opening polymerization and click chemistry

Author:

Porras Julian D.1,Diaz Ivonne L.1,Perez Leon D.1ORCID

Affiliation:

1. Departamento de Química, Facultad de Ciencias Universidad Nacional de Colombia‐Sede Bogotá Bogotá Colombia

Abstract

AbstractThis study focused on synthesizing and characterizing PEGylated amphiphilic block copolymers with pendant linoleic acid (Lin) moieties as an alternative to enhance their potential in drug delivery applications. The synthesis involved a two‐step process, starting with ring‐opening polymerization of ε‐caprolactone (CL) and propargylated cyclic carbonate (MCP) to obtain PEG‐b‐P(CL‐co‐MCP) copolymers, which were subsequently modified via click chemistry. Various reaction conditions were explored to improve the yield and efficiency of the click chemistry step. The use of anisole as a solvent, N‐(3‐azidopropyl)linoleamide as a substrate, and a reaction temperature of 60°C proved to be highly efficient, achieving nearly 100% conversion at a low catalyst concentration. The resulting copolymers exhibited controlled molecular weights and low polydispersity, confirming the successful synthesis. Furthermore, click chemistry allows for the attachment of Lin moieties to the copolymer, enhancing its hydrophobic character, as deduced from their significantly lower critical micelle concentration than that of traditional PEG‐b‐PCL systems, which is indicative of enhanced stability against dilution. The modified copolymers exhibited improved thermal stability, making them suitable for applications that require high processing temperatures. Dynamic light scattering and transmission electron microscopy confirmed the formation of micellar structures with sizes below 100 nm and minimal aggregate formation. Additionally, 1H NMR spectroscopy in deuterated water revealed the presence of core‐shell micelles, which provided higher kinetic stability against dilution.

Funder

Universidad Nacional de Colombia

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3