Laboratory Determination of Particulate‐Matter–Bound Agrochemical Toxicity among Honeybees, Mason Bees, and Painted Lady Butterflies

Author:

Green Frank B.1ORCID,Muñoz Sonia R.1ORCID,Smith Philip N.1ORCID

Affiliation:

1. Department of Environmental Toxicology Texas Tech University Lubbock Texas USA

Abstract

AbstractPollinator population declines are global phenomena with severe consequences for native flora and agriculture. Many factors have contributed to pollinator declines including habitat loss, climate change, disease and parasitism, reductions in abundance and diversity of foraging resources, and agrochemical exposure. Particulate matter (PM) serves as a carrier of toxic agrochemicals, and pollinator mortality can occur following exposure to agrochemical‐contaminated PM. Therefore, laboratory‐controlled experiments were conducted to evaluate impacts of individual PM‐bound agrochemicals. Honeybees (Apis mellifera), blue orchard mason bees (Osmia lignaria), and painted lady butterfly (Vanessa cardui) larvae were exposed to bifenthrin, permethrin, clothianidin, imidacloprid, abamectin, and ivermectin via suspended, airborne PM. Agrochemical concentrations in PM to which pollinators were exposed were based on concentrations observed in fugitive beef cattle feedyard PM including a “mean” treatment and a “max” treatment reflective of reported mean and maximum PM‐bound agrochemical concentrations, respectively. In general, pollinators in the mean and max treatments experienced significantly higher mortality compared with controls. Honeybees were most sensitive to pyrethroids, mason bees were most sensitive to neonicotinoids, and painted lady butterfly larvae were most sensitive to macrocyclic lactones. Overall, pollinator mortality was quite low relative to established toxic effect levels derived from traditional pollinator contact toxicity tests. Furthermore, pollinator mortality resulting from exposure to individual agrochemicals via PM was less than that reported to occur at beef cattle feedyards, highlighting the importance of mixture toxicity to native and managed pollinator survival and conservation. Environ Toxicol Chem 2023;42:2642–2650. © 2023 SETAC

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3