Role of artificial‐intelligence‐assisted automated cardiac biometrics in prenatal screening for coarctation of aorta

Author:

Taksøe‐Vester C. A.123,Mikolaj K.4,Petersen O. B. B.12,Vejlstrup N. G.5,Christensen A. N.4,Feragen A.4,Nielsen M.6,Svendsen M. B. S.3,Tolsgaard M. G.123ORCID

Affiliation:

1. Department of Clinical Medicine, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark

2. Center of Fetal Medicine, Department of Gynecology, Fertility and Obstetrics Copenhagen University Hospital, Rigshospitalet Copenhagen Denmark

3. Copenhagen Academy of Medical Education and Simulation (CAMES) Rigshospitalet Copenhagen Denmark

4. Technical University of Denmark Lyngby Denmark

5. Department of Cardiology Copenhagen University Hospital, Rigshospitalet Copenhagen Denmark

6. Department of Computer Science University of Copenhagen Copenhagen Denmark

Abstract

ABSTRACTObjectiveAlthough remarkable strides have been made in fetal medicine and the prenatal diagnosis of congenital heart disease, around 60% of newborns with isolated coarctation of the aorta (CoA) are not identified prior to birth. The prenatal detection of CoA has been shown to have a notable impact on survival rates of affected infants. To this end, implementation of artificial intelligence (AI) in fetal ultrasound may represent a groundbreaking advance. We aimed to investigate whether the use of automated cardiac biometric measurements with AI during the 18–22‐week anomaly scan would enhance the identification of fetuses that are at risk of developing CoA.MethodsWe developed an AI model capable of identifying standard cardiac planes and conducting automated cardiac biometric measurements. Our data consisted of pregnancy ultrasound image and outcome data spanning from 2008 to 2018 and collected from four distinct regions in Denmark. Cases with a postnatal diagnosis of CoA were paired with healthy controls in a ratio of 1:100 and matched for gestational age within 2 days. Cardiac biometrics obtained from the four‐chamber and three‐vessel views were included in a logistic regression‐based prediction model. To assess its predictive capabilities, we assessed sensitivity and specificity on receiver‐operating‐characteristics (ROC) curves.ResultsAt the 18–22‐week scan, the right ventricle (RV) area and length, left ventricle (LV) diameter and the ratios of RV/LV areas and main pulmonary artery/ascending aorta diameters showed significant differences, with Z‐scores above 0.7, when comparing subjects with a postnatal diagnosis of CoA (n = 73) and healthy controls (n = 7300). Using logistic regression and backward feature selection, our prediction model had an area under the ROC curve of 0.96 and a specificity of 88.9% at a sensitivity of 90.4%.ConclusionsThe integration of AI technology with automated cardiac biometric measurements obtained during the 18–22‐week anomaly scan has the potential to enhance substantially the performance of screening for fetal CoA and subsequently the detection rate of CoA. Future research should clarify how AI technology can be used to aid in the screening and detection of congenital heart anomalies to improve neonatal outcomes. © 2024 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.

Funder

Novo Nordisk Fonden

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3