Ionically Modified Gelatin Hydrogels Maintain Murine Myogenic Cell Viability and Fusion Capacity

Author:

Burattini Margherita12ORCID,Lippens Robrecht3,Baleine Nicolas4ORCID,Gerard Melanie1,Van Meerssche Joeri3ORCID,Geeroms Chloë3ORCID,Odent Jérémy4ORCID,Raquez Jean‐Marie4ORCID,Van Vlierberghe Sandra3,Thorrez Lieven1ORCID

Affiliation:

1. Tissue Engineering Lab, Dep. Development and Regeneration KU Leuven Kulak Kortrijk 8500 Belgium

2. Dep. Of Surgical Sciences, Dentistry and Maternity University of Verona Verona 37129 Italy

3. Polymer Chemistry & Biomaterials Group, Center of Macromolecular Chemistry (CMaC), Dep. Of Organic and Macromolecular Chemistry Ghent University (UGent) Ghent 9000 Belgium

4. Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP) University of Mons (UMONS) Place du Parc 20 Mons 7000 Belgium

Abstract

AbstractFor tissue engineering of skeletal muscles, there is a need for biomaterials which do not only allow cell attachment, proliferation, and differentiation, but also support the physiological conditions of the tissue. Next to the chemical nature and structure of the biomaterial, its response to the application of biophysical stimuli, such as mechanical deformation or application of electrical pulses, can impact in vitro tissue culture. In this study, gelatin methacryloyl (GelMA) is modified with hydrophilic 2‐acryloxyethyltrimethylammonium chloride (AETA) and 3‐sulfopropyl acrylate potassium (SPA) ionic comonomers to obtain a piezoionic hydrogel. Rheology, mass swelling, gel fraction, and mechanical characteristics are determined. The piezoionic properties of the SPA and AETA‐modified GelMA are confirmed by a significant increase in ionic conductivity and an electrical response as a function of mechanical stress. Murine myoblasts display a viability of >95% after 1 week on the piezoionic hydrogels, confirming their biocompatibility. The GelMA modifications do not influence the fusion capacity of the seeded myoblasts or myotube width after myotube formation. These results describe a novel functionalization providing new possibilities to exploit piezo‐effects in the tissue engineering field.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3