Chain Sliding versus β‐Sheet Formation upon Shearing Single α‐Helical Coiled Coils

Author:

Tsirigoni Anna‐Maria12,Goktas Melis1ORCID,Atris Zeynep12,Valleriani Angelo2ORCID,Vila Verde Ana3ORCID,Blank Kerstin G.14ORCID

Affiliation:

1. Max Planck Institute of Colloids and Interfaces Mechano(bio)chemistry Am Mühlenberg 1 14476 Potsdam Germany

2. Max Planck Institute of Colloids and Interfaces Department of Biomaterials Am Mühlenberg 1 14476 Potsdam Germany

3. University of Duisburg‐Essen Faculty of Physics Lotharstrasse 1 47057 Duisburg Germany

4. Johannes Kepler University Linz Institute of Experimental Physics Department of Biomolecular & Selforganizing Matter Altenberger Strasse 69 Linz 4040 Austria

Abstract

AbstractCoiled coils (CCs) are key building blocks of biogenic materials and determine their mechanical response to large deformations. Of particular interest is the observation that CC‐based materials display a force‐induced transition from α‐helices to mechanically stronger β‐sheets (αβT). Steered molecular dynamics simulations predict that this αβT requires a minimum, pulling speed‐dependent CC length. Here, de novo designed CCs with a length between four to seven heptads are utilized to probe if the transition found in natural CCs can be mimicked with synthetic sequences. Using single‐molecule force spectroscopy and molecular dynamics simulations, these CCs are mechanically loaded in shear geometry and their rupture forces and structural responses to the applied load are determined. Simulations at the highest pulling speed (0.01 nm ns−1) show the appearance of β‐sheet structures for the five‐ and six‐heptad CCs and a concomitant increase in mechanical strength. The αβT is less probable at a lower pulling speed of 0.001 nm ns−1 and is not observed in force spectroscopy experiments. For CCs loaded in shear geometry, the formation of β‐sheets competes with interchain sliding. β‐sheet formation is only possible in higher‐order CC assemblies or in tensile‐loading geometries where chain sliding and dissociation are prohibited.

Funder

Deutsche Forschungsgemeinschaft

Max-Planck-Gesellschaft

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3