Fabrication of Bioresorbable Barrier Membranes from Gelatin/Poly(4‐Hydroxybutyrate) (P4HB)

Author:

Yuan Shuaishuai1,Chen Qi1,Guo Manman1,Xu Yongzhi2,Wang Wanchun2,Li Zhibo13ORCID

Affiliation:

1. Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China

2. Department of Stomatology Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266003 China

3. College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China

Abstract

AbstractDental implant surgery is a procedure that replaces damaged or missing teeth with an artificial implant. During this procedure, guided bone regeneration (GBR) membranes are commonly used to inhibit the migration of epithelium and GBR at the surgical sites. Due to its biodegradability, good biocompatibility, and unique biological properties, gelatin (GT) is considered a suitable candidate for guiding periodontal tissue regeneration. However, GT‐based membranes come with limitations, such as poor mechanical strength and mismatched degradation rates. To confront this challenge, a series of GT/poly(4‐hydroxybutyrate) (P4HB) composite membranes are fabricated through electrospinning technology. The morphology, composition, wetting properties, mechanical properties, biocompatibility, and in vivo biodegradability of the as‐prepared composite membranes are carefully characterized. The results demonstrate that all the membranes present excellent biocompatibility. Moreover, the in vivo degradation rate of the membranes can be manipulated by changing the ratio of GT and P4HB. The results indicate that the optimized GT/P4HB membranes with a high P4HB content (75%) may be suitable for periodontal tissue engineering because of their good mechanical properties and biodegradation rate compatible with tissue growth.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3