Oxidized Xanthan Gum Crosslinked NOCC: Hydrogel System and Their Biological Stability from Oxidation Levels of the Polymer

Author:

Quan Vo Minh12ORCID,Do Dat‐Quoc12,Luong Tin Dai12,Tang Tuan‐Ngan12,Vu Binh Thanh12,Le Hien‐Phuong12,Vo Phuc H.12,Dang Nhi Ngoc‐Thao12,Tran Quyen Ngoc34,Trinh Nhu‐Thuy12,Nguyen Thi‐Hiep12ORCID

Affiliation:

1. School of Biomedical Engineering International University Ho Chi Minh 70000 Vietnam

2. Vietnam National University Ho Chi Minh 70000 Vietnam

3. Institute of Applied Materials Science Vietnam Academy Science and Technology Ho Chi Minh 70000 Vietnam

4. Graduate University of Science and Technology Viet Nam Vietnam Academy of Science and Technology Ho Chi Minh 70000 Vietnam

Abstract

AbstractDynamic hydrogel systems from N,O‐carboxymethyl chitosan (NOCC) are investigated in the past years, which has facilitated their widespread use in many biomedical engineering applications. However, the influence of the polymer's oxidation levels on the hydrogel biological properties is not fully investigated. In this study, chitosan is converted into NOCC and introduced to react spontaneously with oxidized xanthan gum (OXG) to form several injectable hydrogels with controlled degradability. Different oxidation levels of xanthan gum, as well as NOCC/OXG volume ratios, are trialed. The infrared spectroscopy spectra verify chemical modification on OXG and successful crosslinking. With increasing oxidation levels, more dialdehyde groups are introduced into the OXG, resulting in changes in physical properties including gelation, swelling, and self‐healing efficiency. Under different volume ratios, the hydrogel shows a stable structure and rigidity with higher mechanical properties, and a slower degradation rate. The shear‐thinning and self‐healing properties of the hydrogels are confirmed. In vitro assays with L929 cells show the biocompatibility of all formulations although the use of a high amount of OXG15 and OXG25 limited the cell proliferation capacity. Findings in this study suggested a suitable amount of OXG at different oxidation levels in NOCC hydrogel systems for tissue engineering applications.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3