Addition of Bone‐Marrow Mesenchymal Stem Cells to 3D‐Printed Alginate/Gelatin Hydrogel Containing Freeze‐Dried Bone Nanoparticles Accelerates Regeneration of Critical Size Bone Defects

Author:

Bastami Farshid12ORCID,Safavi Seyedeh‐Mina3,Seifi Sina2,Nadjmi Nasser4ORCID,Khojasteh Arash142ORCID

Affiliation:

1. Dental Research Center, Research Institute of Dental Sciences, School of Dentistry Shahid Beheshti University of Medical Sciences Tehran Iran

2. Department of Oral and Maxillofacial Surgery, School of Dentistry Shahid Beheshti University of Medical Sciences Tehran Iran

3. Department of Biomedical Engineering, Science and Research Branch Islamic Azad University Tehran Iran

4. Department of Cranio‐Maxillofacial Surgery, University Hospital, Faculty of Medicine and Health Sciences University of Antwerp Antwerp Belgium

Abstract

AbstractA 3D‐printed biodegradable hydrogel, consisting of alginate, gelatin, and freeze‐dried bone allograft nanoparticles (npFDBA), is developed as a scaffold for enhancing cell adhesion, proliferation, and osteogenic differentiation when combined with rat bone marrow mesenchymal stem cells (rBMSCs). This composite hydrogel is intended for the regeneration of critical‐sized bone defects using a rat calvaria defect model. The behavior of rBMSCs seeded onto the scaffold is evaluated through scanning electron microscope, MTT assays, and quantitative real‐time PCR. In a randomized study, thirty rats are assigned to five treatment groups: 1) rBMSCs‐loaded hydrogel, 2) rBMSCs‐loaded FDBA microparticles, 3) hydrogel alone, 4) FDBA alone, and 5) an empty defect serving as a negative control. After 8 weeks, bone regeneration is assessed using H&E, Masson's trichrome staining, and immunohistochemistry. The 3D‐printed hydrogel displays excellent adhesion, proliferation, and differentiation of rBMSCs. The rBMSCs‐loaded hydrogel exhibits comparable new bone regeneration to the rBMSCs‐loaded FDBA group, outperforming other groups with statistical significance (P‐value < 0.05). These findings are corroborated by Masson's trichrome staining and osteocalcin expression. The rBMSCs‐loaded 3D‐printed hydrogel demonstrates promising potential for significantly enhancing bone regeneration, surpassing the conventional clinical approach (FDBA).

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3