Enhanced interaction between ENSO and the South Atlantic subtropical dipole over the past four decades

Author:

Yu Lejiang1ORCID,Zhong Shiyuan2ORCID,Vihma Timo3ORCID,Sui Cuijuan4,Sun Bo1

Affiliation:

1. MNR Key Laboratory for Polar Science Polar Research Institute of China Shanghai China

2. Department of Geography, Environment and Spatial Sciences Michigan State University East Lansing Michigan USA

3. Polar Meteorology and Climatology Group Finnish Meteorological Institute Helsinki Finland

4. Climate Prediction Division National Marine Environmental Forecasting Center Beijing China

Abstract

AbstractThis study investigates the relationship between sea surface temperature (SST) anomalies in the subtropical Atlantic Ocean, as represented by the Southern Atlantic subtropical dipole (SASD), and SST anomalies in the tropical Pacific Ocean, identified by the El Niño‐Southern Oscillation (ENSO). Contrary to the previously held notion of a weak relationship between SASD and ENSO as suggested by earlier literature, our analysis reveals a substantial inverse correlation between the two. This correlation exhibits significant multi‐decadal variability, which has notably intensified over the most recent two decades compared with the preceding two decades. This intensification in the SASD–ENSO inverse correlation may be attributed to the shift in ENSO regime from predominance of eastern Pacific El Niño to central Pacific El Niño events around the turn of the century. This transition triggers wavetrains that propagate along different paths, consequently influencing the South Atlantic subtropical high and inducing alterations in anomalous SST patterns in the subtropical Atlantic Ocean. These findings advance our comprehension of the interactions between South Atlantic and Pacific SST variations, which strongly influence rainfall patterns, particularly in South America and southern Africa. Understanding such teleconnection holds promise for improving sub‐seasonal to seasonal precipitation predictions in these regions.

Funder

National Key Research and Development Program of China

European Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3