Evidence of field‐scale shifts in transpiration dynamics following bark beetle infestation: Stomatal conductance responses

Author:

Li Meijun1,Shao Wei1ORCID,Su Ye23ORCID,Coenders‐Gerrits Miriam4,Jarsjö Jerker3

Affiliation:

1. Key Laboratory of Hydrometeorological Disaster Mechanism and Warning, Ministry of Water Resources / School of Hydrology and Water Resources Nanjing University of Information Science and Technology Nanjing China

2. Department of Physical Geography and Geoecology, Faculty of Science Charles University Prague 2 Czech Republic

3. Department of Physical Geography, and the Bolin Centre for Climate Research Stockholm University Stockholm Sweden

4. Water Resources Section, Faculty of Civil Engineering and Geosciences Delft University of Technology Delft GA The Netherlands

Abstract

AbstractAmplified eruptive outbreaks of bark beetles as a consequence of climate change can cause tree mortality that significantly affects terrestrial water and carbon fluxes. However, the lack of field‐scale observations of underlying physiological mechanisms currently hampers the expression of such ecosystem disturbances in predictive modelling. Based on a unique flux tower dataset from a subalpine forest located in the Rocky Mountains, mechanisms of stomatal response to an extensive bark beetle outbreak were investigated using various models and parametrizations. The datasets cover a decade, including the periods of pre‐infestation, infestation, and post‐infestation. Field measurements showed considerable decreases in evapotranspiration (ET), transpiration (T), and leaf area index (LAI) during the two‐year infestation period compared to the pre‐infestation period. Model interpretations of observed water and carbon fluxes indicated that the overall reductions in T were not solely due to decreased LAI, but also to changes in physiological behaviours. The summer season's canopy‐scale stomatal conductance was significantly reduced during the infestation period, from 0.0018 to 0.0011 m s−1. One primary reason for the observed variations is likely that the bark beetle infestation hampers the water transport in the xylem. The damage of xylem has important implications for water use efficiency (WUE), which also significantly influences the parameterization of stomatal conductance. When using stomatal conductance models to forecast ecosystem dynamics, it is crucial to recalibrate the model's parameters to ensure the accurate depiction of stomatal dynamics during various infestation periods. The neglect of the temporal variability of canopy‐scale stomatal conductance under ecosystem disturbances (e.g., bark beetle infestations) in current earth system models, therefore, requires specific attention in assessments of large‐scale water and carbon balances.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3