Developing constitutive models from EPR-based self-learning finite element analysis
Author:
Affiliation:
1. Department of Engineering; University of Exeter; North Park Road Exeter EX4 4QF U.K.
2. Department of Civil Engineering, School of Engineering; University of Birmingham; Birmingham Edgbaston B15 2TT U.K.
Publisher
Wiley
Subject
Mechanics of Materials,Geotechnical Engineering and Engineering Geology,General Materials Science,Computational Mechanics
Reference36 articles.
1. Numerical implementation of a neural network based material model in finite element analysis;Hashash;Int J Numer Methods Eng,2004
2. Rezania M Evolutionary polynomial regression based constitutive modelling and incorporation in finite element analysis PhD thesis 2008 ; University of Exeter
3. Faramarzi A Intelligent computational solutions for constitutive modelling of materials in finite element analysis PhD thesis 2011 ; University of Exeter
4. Novel approach to integration of numerical modelling and field observations for deep excavations;Hashash;ASCE J Geotech Geoenviromental Eng,2006
5. Applications of artificial intelligence and data mining techniques in soil modelling;Javadi;Geomech Eng, An Int J,2009a
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An optimized prediction of FRP bars in concrete bond strength employing soft computing techniques;Journal of Building Engineering;2024-06
2. Comparing 1D Regression and Evolutionary Polynomial Analyses for Predicting Brazilian Tensile Strength of Limestone in Dry and Saturated Conditions;Geotechnical and Geological Engineering;2023-11-26
3. Soft computing models for assessing bond performance of reinforcing bars in concrete at high temperatures;Innovative Infrastructure Solutions;2023-07-27
4. An enhanced deep learning method for accurate and robust modelling of soil stress–strain response;Acta Geotechnica;2023-02-25
5. Evolutionary polynomial regression improved by regularization methods;PLOS ONE;2023-02-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3