An integrated system theoretic process analysis with multilevel flow modeling for the identification of cyber‐physical hazards in a process industry

Author:

Zhang Feilong12ORCID,Chen Liangchao12,Zhang Bo12,Zhang Jianwen12,Wang Qianlin12,Wang Pengchao12,Yang Jianfeng12,Dou Zhan12

Affiliation:

1. College of Mechanical and Electrical Engineering and Interdisciplinary Research Center for Chemical Process Safety Beijing University of Chemical Technology Beijing China

2. Interdisciplinary Research Center for Chemical Process Safety Beijing University of Chemical Technology Beijing China

Abstract

AbstractThe deep integration of information technology and process industry production systems makes system failure increasingly multi‐source and multi‐scale. In contrast to conventional hazard methods, system theoretic process analysis (STPA) can analyze the hazards in system control processes from the perspective of interactions among the system components. Theoretically, this method offers advantages that are better suited for modern production systems. However, as of now, the integration between STPA and process industrial production systems is still lacking. To address this issue, this study improved the original STPA method. First, we propose the “5 flows” concept for the process industrial cyber‐physical systems. The systems are described using multilevel flow modeling (MFM). This leads to the development of the MSTPA method, which is specifically designed to analyze the cyber‐physical hazards in process industrial production systems. Subsequently, the cyber‐physical hazards of a fluidized‐bed catalytic cracking unit are analyzed in detail using the MSTPA method as an example. The results show that MSTPA can identify cyber‐physical hazards in multiple dimensions. It is proved that, compared with the original STPA and traditional hazard methods, the MSTPA method can better identify cyber‐physical hazards in process industrial production systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3